

Material Didático do Curso de Engenharia Mecânica da UniEVANGÉLICA

Disciplina: SOLDAGEM – PROCESSO TIG Docente(s): SÉRGIO MATEUS BRANDÃO WILSON DE PAULAE SILVA

Volume 01, 2018

Centro Universitario de Anápolis - UniEVANGÉLICA

Associação Educativa Evangélica

Conselho de Adiministração

Presitente - Ernei de oliveira Pina

1º Vice-Presidente – Cicílio Alves de Moraes

2º Vice-Presidente – Ivan Gonçalves da Rocha

1º Secretário – Geraldo Henrique Ferreira Espíndola

2º Secretário – Francisco Barbosa de Alencar

1º Tesoureiro – Augusto César da Rocha Ventura

2º Tesoureiro – Djalma Maciel Lima

Centro Universitário de Anápolis

Chanceler – Ernei de Oliveira Pina

Reitor - Carlos Hassel Mendes da Silva

Pró-Reitor Acadêmico - Cristiane Martins Rodrigues Bernardes

Pró-Reitor de Pós-Graduação, Pesquisa, Extensão e Ação Comunitária - Sandro Dutra e Silva

Coordenadora da Pesquisa e Inovação - Bruno Junior Neves

Coordenador de Extensão e Ação Comunitária - Fábio Fernandes Rodrigues

Equipe Editorial

Diretor - Hélio de Souza Queiroz

Coordenador de Pesquisa – Rosemberg Fortes Nunes Rodrigues

Coordenador Pedagógico - Wilson de Paula e Silva

Coordenador de Planejamento e Inovação - Ricardo Wobeto

Coordenador de Laboratórios e de Atividades de Extensão - Sérgio Mateus Brandão

Coordenador de Estágio Supervisionado - Marcio José Dias

CENTRO UNIVERSITÁRIO DE ANÁPOLIS - UniEVANGÉLICA Curso de Engenharia Mecânica

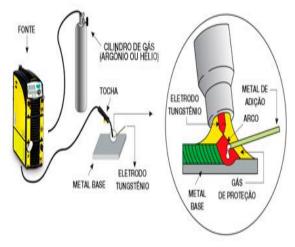
Avenida Universitária Km 3,5 Cx. Postal 122 e 901 - CEP: 75 070 - 290 - Anápolis-GO Fones: (062) 3310 - 6754 e 3310 - 6654

Anápolis, / 2018 Disciplina: Processos de Soldagem ío

Prof. MSc. Wilson	n de Paula e Silv
MSc Sérgio	Mateus Brandã
Acadêmicos (as)	

Nº	ACADÊMICOS	N°	ACADÊMICOS
1		4	
2		5	
3		6	

GUIA DE ESTUDOS-PROCESSOS DE SOLDAGEM - TIG


Este guia é uma estratégia pedagógica adotada pelo docente para fazermos juntos uma leitura de parte do material didático proposto e resolvemos algumas questões sobre processo de soldagem elétrica processo Gas Tungsten Arc Welding (GTAW) -TIG.

- 1. As respostas devem ser dadas em MANUSCRITO;
- Formar grupos com 06(seis) estudantes por grupo
- 3. DATA da entrega deste trabalho-20/11/2018.

Bons estudos!

PROCESSO DE SOLDAGEM TIG - Tungsten Inert Gas Welding (GTAW)

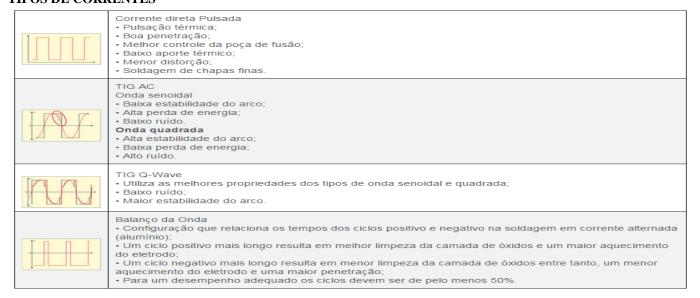
REFERENCIAL TEÓRICO:

Soldagem TIG (Tungsten Inert Gas) ou GTAW (Gas-Shielded Tungsten Arc Welding) Este processo pode ser usada para quase todos os metais, pode ser manual ou automático é um processo que utiliza um eletrodo sólido de tungstênio não consumível. O eletrodo, o arco e a área em volta da poça de fusão da solda são protegidos por uma atmosfera protetora de gás inerte. Se um metal de enchimento é necessário, ele é adicionado no limite da poça de fusão.

A soldagem TIG produz uma solda limpa e de alta qualidade. Como não é gerada escória, a chance de inclusão da mesma no metal de solda é eliminada, e a solda não necessita de limpeza no final do processo. A soldagem TIG pode ser feita utilizando corrente contínua (CC- ou CC+) ou corrente alternada (CA). Cada uma dessas alternativas irá influenciar fortemente os mecanismos de emissão de elétrons e consequentemente as características de soldabilidade.

Em contato com o ar as ligas de alumínio formam uma superfície de óxido de alumínio que dificulta ou mesmo impede sua soldagem. Para sobrepor esse problema se faz o uso de corrente alternada, a qual associa as propriedades de limpeza da corrente CC+ e de penetração da CC- a cada meio ciclo.

APLICACÕES


- Soldagem de tubos e chapas de espessuras finas;
- Passe de raiz em tubos de vários diâmetros e espessuras;
- · Reparo e manutenção em geral;
- Soldagem de alumínio e magnésio e suas ligas;
- Soldagem de materiais dissimilares:
- Soldagem de uma ampla gama de metais, como aços carbono e baixa liga, aços inoxidáveis, ligas de alumínio, ligas de níquel, ligas de cobre e ligas de magnésio.

Fonte: adaptado de centro de conhecimento esab - https://www.esab.com.br/br/pt/education/blog/processo_soldagem_tig_gtaw

TIPOS DE PROCESSO

TIPO DE CORRENTE	CONTÍNUA		ALTERNADA
Características	Direta CC-	Inversa CC+	CA
Objetivo	Penetração profunda e preservação do tungstênio	Penetração "rasa" e efeito limpeza de óxido superficial	Preservação do W e efeito limpeza a cada meio ciclo
Aplicação	Aços carbono, baixa/alta liga, inoxidáveis, prata e cobre e ligas, revestimentos	Viável para soldagem de pequenas espessuras	Alumínio, magnésio e suas ligas
Eletrodo de W: capacidade de suportar corrente sem fundir	Ótima, pode-se usar altos valores de corrente	Pobre, somente para baixos valores de corrente	Boa, pode-se usar valores intermediários de corrente
Ação de limpeza do óxido na soldagem de Al e Mg e suas ligas	Não	Sim	Sim, a cada meio ciclo
Balanço de calor no arco (aprox.)	70% na peça, 30% no eletrodo	30% na peça, 70% no eletrodo	50% na peça, 50% no eletrodo
Fluxo de elétrons - Penetração	↓ e-	† e-	110-

TIPOS DE CORRENTES

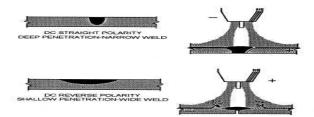
ABERTURA

DE

ARCO

A abertura convencional do arco elétrico na soldagem TIG envolve o arraste (ou "risco") do eletrodo na peça.

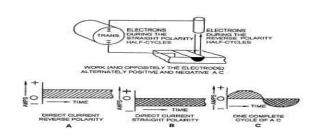
Modo de Operação	Arraste	LiftArc	Alta Frequência
Objetivo	O eletrodo é encostado na peça e "riscado" rapidamente na peça p/ abertura do arco	O eletrodo é encostado na peça e a tocha é levemente retirada na posição inclinada até a abertura do arco	Preservação do W e efeito limpeza a cada meio ciclo
Vantagens	Baixo Custo. Pode ser usado uma fonte p/ eletrodos revestidos.	Baixo custo. Usado em tochas convencionais.	Não há desgaste do eletrodo por contato. Sem risco de inclusão de tungstênio.
Desvantagens	Rápido desgaste do eletrodo. Risco de inclusão de tungstênio.	Pequeno risco de inclusão.	Ruído. Custo mais elevado. Risco de distúrbio em equipamentos eletrônicos devido a alta frequência.

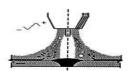

QUE TIPO DE SOLDA USAR? TIG AC/DC OU DC?

Basicamente podemos dividir os equipamentos de solda TIG em dois tipos: os somente DC (Direct corrent ou em português: Corrente Continua) e os AC/DC que, além da opção DC, também tem a opção AC (alternate corrent ou em português: corrente alternada). Cada um deles atende com perfeição os quesitos para soldar determinados tipos de materiais, confira a seguir:

Solda TIG tipo DC

A palavra DC, vem da abreviação de Direct Corrent, ou Corrente Continua em português. Na solda TIG, significa que o eletrodo estará conectado no terminal negativo, aquecendo menos o eletrodo, comparado com a situação inversa.


Ela é utilizada para soldar aço, aço inoxidáveis, cobre, níquel, titânio, cromobilideno, etc.


Solda TIG tipo AC

A palavra AC, vem da abreviação de Alternate Corrent, ou Corrente Alternada em português. Neste tipo de soldagem teremos o eletrodo alternando entre positivo e negativo, proporcionando um balanceamento do calor entre o eletrodo de tungstênio e a peça a ser soldada, removendo inclusive a camada de oxidos gerado durante o ciclo positivo, permitindo ao metal fluir facilmente.

Esta opção é perfeita para soldagens de materiais não ferrosos, tais como alumínio e magnésio juntamente com suas ligas.

Fonte- Adaptado de: http://guias.oxigenio.com/que-tipo-de-solda-usar-tig-acdc-ou-dc

PARÂMETROS SUGERIDOS PARA SOLDA TIG

Espessura do metal	Tipo da junta	Diâmetro do eletrodo de tungstênio toriado. Com 2% de tório. Côr de identificação (vermelho)	Diâmetro da vareta de adição (se necessário)	Amperagem	Gás de Proteção	Vazão em L/m (Litros por minuto)	Bocais cerâmicos em Nº (Norma AWS)
1.6 mm (1/16")	Topo Sobreposta Canto Angular	1.6 mm (1/16")	1.6 mm (1/16")	40 - 60 50 - 70 40 - 60 50 - 70	Argônio	7	4, 5, 6
2.5 mm (3/32")	Topo Sobreposta Canto Angular	2.4 mm (3/32")	1.6 mm ou 2.4 mm (1/16" ou 3/32")	60 - 80 70 - 90 60 - 80 70 - 90	Argônio	7	4, 5, 6
3.2 mm (1/8")	Topo Sobreposta Canto Angular	2.4 mm (3/32")	2.4 mm (3/32")	65 - 85 90 - 110 65 - 85 90 - 110	Argônio	7	4, 5, 6
4.8 mm (3/16")	Topo Sobreposta Canto Angular	2.4 mm (3/32")	3.2 mm 1/8"	100 - 125 125 - 150 100 - 125 125 - 150	Argônio	9.5	6, 7, 8
6.4 mm (1/4")	Topo Sobreposta Canto Angular	3.2 mm (1/8")	4.0 mm	135 - 160 160 - 180 135 - 160 160 - 180	Argônio	9.5	6, 7, 8

Tabela de variáveis	, sugeridas quando sold	ar manualmente aços o	carbono e Baixa liga	pelo process	o TIG (GTAW).	Utilizando DCEN

Espessura	Tipo da	Diâmetro do eletrodo de	Diâmetro da	Amperagem	Gás de	Vazão em	Bocais
do metal	junta	tungstênio toriado. Com	vareta de adição		Proteção	L/m	cerâmicos em Nº
		2% de tório. Côr de	(se necessário)			(Litros por	(Norma AWS)
		identificação (vermelho)				minuto)	
	Торо		1.6 mm	60 - 70			
1.6 mm	Sobreposta	1.6 mm	(1/16")	70 - 90	Argônio	7	4, 5, 6
(1/16")	Canto	(1/16")		60 - 70			
	Angular			70 - 90			
2.5 mm	Topo			70 - 90			
(3/32")	Sobreposta	2.4 mm	1.6 mm ou 2.4 mm	90 - 110	Argônio	7	4, 5, 6
	Canto	(3/32")	(1/16" ou 3/32")	70 - 90			
	Angular			90 - 110			
3.2 mm	Торо			80 - 100			
(1/8")	Sobreposta	2.4 mm	2.4 mm	90 - 115	Argônio	7	4, 5, 6
	Canto	(3/32")	(3/32")	80 - 100			
	Angular			90 - 115			
4.8 mm	Торо	2.4 mm		115 - 135			
(3/16")	Sobreposta	(3/32")	3.2 mm	140 - 165	Argônio	9.5	6, 7, 8
	Canto		1/8"	115 - 135			
	Angular			140 - 170			
6.4 mm	Торо			160 - 175	Argônio		
(1/4")	Sobreposta	3.2 mm	4.0 mm	170 - 200		9.5	6, 7, 8
	Canto	(1/8")	(5/32")	160 - 175			
	Angular			175 - 210			

Tabela de variáveis, sugeridas quando soldar manualmente <mark>Alumínio</mark> pelo processo TIG (GTAW). Utilizando AC e Alta Freqüência.

Espessura do metal	Tipo da junta	Diâmetro do eletrodo de tungstênio Puro. Côr de identificação (verde)	Diâmetro da vareta de adição (se necessário)	Amperagem	Gás de Proteção	Vazão em L/m (Litros por minuto)	Bocais cerâmicos em Nº (Norma AWS)
1.6 mm (1/16")	Topo Sobreposta Canto Angular	1.6 mm (1/16")	1.6 mm (1/16°)	60 - 85 70 - 90 60 - 85 75 - 100	Argônio	7	4, 5, 6
2.5 mm (3/32")	Topo Sobreposta Canto Angular	2.4 mm (3/32")	2.4 mm (3/32")	85 - 105 90 - 110 85 - 105 90 - 110	Argônio	7	4, 5, 6
3.2 mm (1/8")	Topo Sobreposta Canto Angular	2.4 mm ou 3.2 mm (3/32" ou 1/8")	2.4 mm (3/32")	125 - 150 130 - 160 120 - 140 130 - 160	Argônio	9.5	6 e 7
4.8 mm (3/16")	Topo Sobreposta Canto Angular	3.2 mm ou 4.0 mm (1/8" ou 5/32")	3.2 mm 1/8"	180 - 225 190 - 240 180 - 225 190 - 240	Argônio	12	7 e 8
6.4 mm (1/4")	Topo Sobreposta Canto Angular	3.2 mm (1/8")	4.8 mm	240 - 280 250 - 320 240 - 280 250 - 320	Argônio	14	8, 10, 12

Faixas de utilização de eletrodos no processo GTAW.

Diâmetro do	Corrente de Soldagem (A)					
Eletrodo	C	A	C	С		
(mm)	W	WTh	W/WTh (CC+)	W/WTh (CC-)		
0,5			5 - 35			
1,0	10 - 40	15 - 60	30 - 100			
1,6	30 - 70	60 - 100	70 - 150	10 - 20		
2,4	70 - 100	100 - 160	150 - 225	15 - 30		
3,2	100 - 150	140 - 220	200 - 275	25 - 40		
4,0	150 - 225	200 - 275	250 - 350	40 - 55		
4,8	200 - 300	250 - 400	300 - 500	55 - 90		
6,4	275 - 400	300 - 500	400 - 650	80 - 125		
Identificação:	W - Eletrodo de	tungstênio				
	WTh - Eletrodo	de tungstênio torin	ado			

Fonte: http://www.brazilweldsdicasparasoldagem.com/2014/06/parametros-sugeridos-para-solda-tig.html

ATIVIDADES PARA SEREM RESOLVIDOS:

I PARTE:

- 1- Descreva o Processo de soldagem TIG indicando suas vantagens e limitações.
- 2- Indique os parâmetros operacionais do processo TIG e faça uma paralelo (comparativo) entre este processo e um outro processo estudado por nós, (à escolha do grupo).
- 3- Faça uma dissertação (mínimo de 10 linhas) explicando(TECNICAMENTE) o eletrodo não consumível utilizado no Processo de soldagem TIG-(tipos, características, classificação, normas técnicas, afiação, aplicação etc.).
- 4- Faça uma dissertação (mínimo de 10 linhas) explicando (TECNICAMENTE) sobre os gases utilizados no Processo de soldagem TIG- (tipos, características, classificação, normas técnicas, aplicação na soldagem etc.).
- 5- Soldagem TIG (Tungsten Inert Gas) ou GTAW (Gas-Shielded Tungsten Arc Welding) é um processo que utiliza um eletrodo sólido de tungstênio não consumível. O eletrodo, o arco e a área em volta da poça de fusão da solda são protegidos por uma atmosfera protetora de gás inerte. O processo de soldagem TIG apresenta, em sua forma usual de utilização, uma limitação quanto à máxima espessura soldável, particularmente em juntas sem chanfro, e uma taxa de deposição menor do que as

comumente obtidas com processos de soldagem a arco com eletrodo consumível. Estas características tendem a limitar a utilização desse processo para soldagem de peças relativamente finas ou para casos especiais em que as características do material usado ou as demandas da aplicação justifiquem o seu uso em juntas de maior espessura.

È possível aplicar este processo de soldagem (TIG) utilizando-se proteção ativa? Justifique tecnicamente sua resposta (mínimo de 10 linhas) utilizando como fonte bibliográfica os artigos:

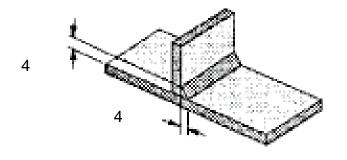
- A química da formação do cordão na soldagem TIG MODENESE, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
- Soldagem TIG de Elevada Produtividade: Influência dos Gases de Proteção na Velocidade Limite para Formação de Defeitos SCHWEDERSKY Mateus Barancelli; DUTRA Jair Carlos; OKUYAMA Marcelo Pompermaier; SILVA Régis Henrique
 Gonçalves Universidade Federal de Santa Catarina, Departamento de Engenharia Mecânica, Laboratório de Soldagem,
 Florianópolis, Santa Catarina, Brasil.

II PARTE:

- 1 Considerando- se que você tenha que soldar duas peças fabricadas em alumínio com 1/4" de espessura, vide desenho, utilizando o processo de soldagem tungsten arc welding (gtaw).
 - A- Defina e preencha a tabela 1 com os parâmetros necessários para o procedimento de soldagem.
 - B- Indique a simbologia da junta soldada (solda esperada)

Tabela 1

Tipo de junta	Classificação(AWS), Ø e composição do eletrodo	Classificação (AWS) e Ø do metal de adição(consumível)	Amperagem (A)	Corrente/Polaridade	Vazão de gás(L/mim)	Nº do Bocal	Gás de proteção
	eietrodo	adiçao(consumivei)					

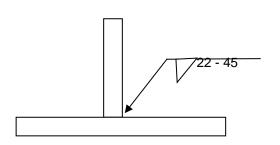


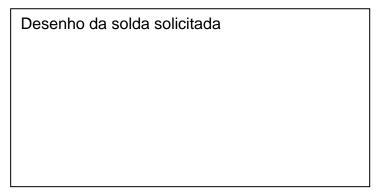
Simbologia da solda solicitada

- 2 Considerando- se que você tenha que soldar duas peças fabricadas em aço inoxidável com 3/16" de espessura, vide desenho, utilizando o processo de soldagem tungstenarcwelding(gtaw).
 - A- Defina e preencha a tabela 2 com os parâmetros necessários para o procedimento de soldagem.
 - B- Indique a simbologia da junta soldada (solda esperada)

Tabela 2

Tipo de junta	Classificação(AWS), Ø e composição do eletrodo	Classificação (AWS) e Ø do metal de adição(consumível)	Amperagem (A)	Corrente/Polaridade	Vazão de gás(L/mim)	Nº do Bocal	Gás de proteção




Simbologia da solda solicitada							

- 3- Considerando- se que você tenha que soldar duas peças fabricadas em aço ABNT 1020 com 3/16" de espessura, vide desenho, utilizando o processo de soldagem tungstenarcwelding(gtaw).
 - A- Defina e preencha a tabela 3 com os parâmetros necessários para o procedimento de soldagem.
 - B- Indique a simbologia da junta soldada (solda esperada)

Tabela 3

Tipo de junta	Classificação(AWS), Ø e composição do eletrodo	Classificação (AWS) e Ø do metal de adição(consumível)	Amperagem (A)	Corrente/Polaridade	Vazão de gás(L/mim)	Nº do Bocal	Gás de proteção

Prof^{os} MSc Wilson de Paula e Silva MSc Sérgio Mateus Brandão